

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 1115-1122

Respiratory syncytial virus fusion inhibitors. Part 3: Water-soluble benzimidazol-2-one derivatives with antiviral activity in vivo

Kuo-Long Yu,^{a,†} Xiangdong Alan Wang,^a Rita L. Civiello,^a Ashok K. Trehan,^a Bradley C. Pearce,^a Zhiwei Yin,^a Keith D. Combrink,^{a,‡} H. Belgin Gulgeze,^a Yi Zhang,^a Kathleen F. Kadow,^b Christopher W. Cianci,^b Junius Clarke,^b Eugene V. Genovesi,^b Ivette Medina,^b Lucinda Lamb,^b Philip R. Wyde,^c Mark Krystal^b and Nicholas A. Meanwell^{a,*}

^aDepartment of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute,
5, Research Parkway, Wallingford, CT 06492, USA

^bDepartment of Virology, The Bristol-Myers Squibb Pharmaceutical Research Institute,
5, Research Parkway, Wallingford, CT 06492, USA

^cDepartment of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA

Received 11 November 2005; revised 24 November 2005; accepted 28 November 2005 Available online 20 December 2005 Dedicated to the memory of John E. Lawson, Ph.D.

Abstract—The introduction of acidic and basic functionality into the side chains of respiratory syncytial virus (RSV) fusion inhibitors was examined in an effort to identify compounds suitable for evaluation in vivo in the cotton rat model of RSV infection following administration as a small particle aerosol. The acidic compounds 2r, 2u, 2v, 2w, 2z, and 2aj demonstrated potent antiviral activity in cell culture and exhibited efficacy in the cotton rat comparable to ribavirin. In a BALB/c mouse model, the oxadiazolone 2aj reduced virus titers following subcutaneous dosing, whilst the ester 2az and amide 2aab exhibited efficacy following oral administration. These results established the potential of this class of RSV fusion inhibitors to interfere with infection in vivo following topical or systemic administration.

© 2005 Elsevier Ltd. All rights reserved.

Annual outbreaks of respiratory syncytial virus (RSV) infections occur most prominently during the winter season in the United States, although the virus has also been detected during the summer months.^{3–8} Exposure to RSV is essentially universal for those under 2 years of age and re-infection is common, a consequence of an incomplete immune response of limited durability. RSV can also occur as a co-infection with other respiratory pathogens, resulting in exacerbated symp-

Keywords: Water-soluble respiratory syncytial virus inhibitors; Antiviral; Benzimidazol-2-one derivatives.

toms.^{9,10} Those most vulnerable complications from RSV infection are infants with underlying cardiopulmonary problems.⁸ RSV infections are also problematic in the elderly and immunocompromised, populations where morbidity and mortality are underestimated since it is frequently misdiagnosed as influenza.8,11-13 Of particular note, outbreaks of RSV in bone marrow transplant units are associated with high levels of mortality. 14,15 The treatment of RSV infection is currently limited to administration of the nucleoside analogue ribavirin, a teratogen with an enigmatic mode of action that is frequently administered as an aerosol. 16 Prophylaxis with the humanized monoclonal antibody palivizumab (Synagis®), delivered by a series of injections during the disease season, has shown benefit in the prevention of RSV infections. 17,18 However, the high cost of palivizumab^{19–22} restricts its widespread use and there remains a need for potent, selective, and efficacious inhibitors of RSV suitable

[★] For Parts 1 and 2 of this series, see Refs. 1 and 2.

^{*} Corresponding author. Tel.: +1 203 677 6679; fax: +1 203 677 7884; e-mail: nicholas.meanwell@bms.com

[†] Present address: Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285-0438, USA.

^{*} Present address: Cumbre Inc., 1502 Viceroy Drive, Dallas, TX 75235, USA.

for clinical use.^{3–6,23–26} Against this background, there has been considerable recent interest in discovering and developing inhibitors of RSV, a process that has generally relied upon screening campaigns using a virus replication assay. Interestingly, whilst this strategy is essentially devoid of mechanistic bias, the majority of RSV inhibitors that have been characterized appear to interfere with the fusion of virus and host cell membranes.^{27–38}

The discovery and preliminary structure-activity relationships associated with a new structural class of RSV fusion inhibitors^{1,2} have been described, and this provided the foundation for the discovery of BMS-433771, an orally active antiviral agent.^{39–41} Whilst a series of benzotriazole derivatives 1a were the focus of initial studies, 1 evolution of this chemotype resulted in the development of a series of more potent RSV inhibitors based on the benzimidazol-2-one template generically represented by 1b.2 However, reproducible antiviral activity in vivo in rodent models of RSV infection following oral or subcutaneous administration with representative compounds from either series 1a or 1b could not be obtained. As a consequence, we sought to establish RSV inhibitory activity in vivo using topical delivery of compounds via small particle aerosol.⁴² In order to pursue this strategy, RSV inhibitors with a high level of aqueous solubility suitable for formulation as aerosols were required. In this communication, the synthesis and SAR associated with a series of RSV inhibitors that incorporate polar functionality conferring aqueous solubility are described. Representative compounds from this study demonstrated antiviral activity in the cotton rat model of RSV infection, establishing proof of concept in vivo for this chemotype, which has been shown to function through destabilization of the 6-helix bundle assembly that is a critical step in the function of the fusion protein.⁴¹

The introduction of side chains containing both acidic and basic moieties to the benzimidazole and the benzimidazol-2-one heterocycles of the core template **2** were examined as part of this study. The scope of the survey is compiled in Tables 1 (acidic compounds) and 2 (basic amine-containing derivatives). The three general synthetic strategies that had been optimized in earlier studies were utilized to assemble target compounds and are summarized in Scheme 1.^{2,43–45} Side-chain elements were generally introduced to substrates **3** and **6** using alkylation methodology and subsequent functional group manipulation was straightforward, with simple alkyl esters converted to carboxylic acids under alkaline conditions and *tert*-butyl esters (for the preparation of **2z**) unmasked under acidic conditions. The sulfonic acids **2l** and **2m** were accessed in a direct fashion using

the appropriate commercially available sultones as electrophiles. Carboxylic acids 2n and 2p were derivatized to the dicarboxylates 2v and 2x, respectively, by coupling with the dimethyl ester of L-aspartic acid using PyBroP in DMF in the presence of (i-Pr)₂NEt, followed by ester hydrolysis. The iminodiacetic acid derivative 2at was obtained from 2ar in a similar fashion. The acylsulfonamides 2f and 2g originated from acid 2a using protocols described in the literature, 46,47 while the tetrazoles 2h-k and 2aa-2ac were prepared from the corresponding nitriles² by heating with NaN₃ and NH₄Cl in DMF at 110 °C. 48 For compounds 2ag and 2ah, benzylation of the benzimidazol-2-one nitrogen was conducted on the trityl-protected form of tetrazole 2ae, a compound procured by exposure of 2ae to trityl chloride in the presence of Et₃N in DMF at 70 °C. ⁴³ Removal of the trityl moiety subsequent to alkylation was accomplished by exposure to HCl in MeOH or one equivalent of NaOH in MeOH. BBr3-mediated demethylation of 2ah afforded 2ai. The oxadiazolone 2aj was prepared from the corresponding amidoxime, derived by exposing the appropriate nitrile to hydroxylamine, after treatment with phosgene in toluene at 120 °C for 8 h. 49 Phosphonic acids 2r, 2t, and 2ap were liberated from their esters using TMSBr in CH₂Ĉl₂.⁵⁰

The compounds presented in Tables 1 and 2 were evaluated as inhibitors of the RSV-induced cytopathic effect (CPE) of the Long (a subtype A) strain of virus replicating in HEp-2 human lung epithelial carcinoma cells.³⁹ The antiviral activity, defined as the EC₅₀, is the concentration of test compound preserving 50% of infected cells, whilst the CC₅₀ is the concentration of drug that manifests cytotoxicity toward 50% of uninfected HEp-2 cells. The therapeutic index reported in the tables is the ratio of CC₅₀ to EC₅₀. Test compounds were typically evaluated in two consecutive experiments with additional experiments conducted in the absence of reasonable concordance. Where the data reported are the average of 2 or 3 experiments, the individual results provide a measure of assay variability.

The results presented in Tables 1 and 2 extend and refine the structure-activity correlates developed earlier for this class of RSV fusion inhibitors and demonstrate quite clearly that polar, water-solubilizing elements deployed at the terminus of either the benzimidazole or benzimidazol-2-one side chains are compatible with potent antiviral activity. 1,2 The initial survey was conducted with the iso-amyl side chain appended to the benzimidazole moiety since this configuration had emerged as optimal from earlier work.^{1,2} For the series of simple alkyl carboxylates defined by 2a-e, superior potency is observed with longer alkyl chains that project the polar functionality away from the benzimidazol-2one nucleus, a trend largely reproduced with the homologous series of tetrazoles 2h-k, an established carboxylic acid isostere. 51 Another carboxylate isostere, the acylsulfonamide moiety, 46 was examined only in the context of the acetic acid derivative 2a. However, both 2f and 2g are weaker antiviral agents than the progenitor. These observations are consistent with the proposed mode of binding of this class of inhibitors to the trimeric amino

Compound	R^1	\mathbb{R}^2	Antiviral activity EC ₅₀ ^a (μM)	Cytotoxicity CC ₅₀ (μM)	Therapeutic index ^b
2a	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CO ₂ H	$0.163 \pm 0.064 \ (n=3)$	$194.3 \pm 48.0 \ (n=3)$	
2b	$CH_2CH_2CH(CH_3)_2$	CH ₂ CH ₂ CO ₂ H	0.015 (0.013/0.016)	102.1 (99.6/104.6)	6806
2c	$CH_2CH_2CH(CH_3)_2$	CH ₂ CH ₂ CH ₂ CO ₂ H	0.075 (0.047/0.104)	138.2 (172.8/103.5)	1843
2d	$CH_2CH_2CH(CH_3)_2$	CH ₂ CH ₂ CH ₂ CH ₂ CO ₂ H	0.008 (0.003/0.013)	16.5 (18.9/14.1)	2062
2e	$CH_2CH_2CH(CH_3)_2$	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CO ₂ H	0.015 (0.015/0.015)	16.5 (20.5/12.5)	1100
2f	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CONHSO ₂ CH ₃	0.613 (1.110/0.116)	151.7 (116.4/187.0)	247
2g	$CH_2CH_2CH(CH_3)_2$	CH ₂ CONHSO ₂ Ph	1.214 (0.979/1.449)	14.1 (9.8/18.5)	12
2h	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CN ₄ H	0.500 (0.428/0.572)	>210	>420
2i	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CN ₄ H	0.235 (0.240/0.229)	37.1 (21.2/15.9)	158
2j	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₂ CN ₄ H	0.015 (0.015/0.014)	14.9 (20.8/9.0)	993
2k	$CH_2CH_2CH(CH_3)_2$	CH ₂ CH ₂ CH ₂ CH ₂ CH ₄ CN ₄ H	0.013 (0.013/0.013)	90.0 (18.6/161.5)	6923
21	$CH_2CH_2CH(CH_3)_2$	CH ₂ CH ₂ CH ₂ SO ₃ H	0.038 (0.042/0.034)	114.5/>209	3013
2m	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₂ SO ₃ H	0.052 (0.003/0.101)	2.9 (2.5/3.3)	56
2n	$CH_2CH_2CH(CH_3)_2$	CH_2 -4- C_6H_4 - CO_2H	$0.011 \pm 0.0006 (n = 3)$	$27.3 \pm 10.5 (n = 3)$	2482
20	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ -3-C ₆ H ₄ -CO ₂ H	0.010 (0.012/0.007)	10.7 (16.0/5.4)	1070
2p	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ -2-C ₆ H ₄ -CO ₂ H	0.011 (0.010/0.012)	15.7 (16.5/14.9)	1427
-r 2q	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ -3,5-C ₆ H ₃ -(CO ₂ H) ₂	$0.656 \pm 0.923 \ (n = 3)$	>168 (<i>n</i> = 3)	>256
2r	$CH_2CH_2CH(CH_3)_2$	CH ₂ -4-C ₆ H ₄ -P(O)(OH) ₂	$0.027\pm0.036 \ (n=3)$	81/>175/>175	3000
2s	$CH_2CH_2CH(CH_3)_2$	CH_2 -4- C_6H_4 -P(O)(OH)(OEt)	$0.048 \pm 0.027 \ (n = 3)$	>180/>180/161	3354
2t	CH ₂ CH ₂ CH(CH ₃) ₂	CH_2 -4- C_6H_4 - CH_2 P(O)(OH) ₂	0.051 (0.050/0.051)	2.8 (3.0/2.7)	55
2u	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ -2-C ₆ H ₄ -SO ₃ H	$0.007 \pm 0.004 \ (n = 5)$	>19 (19/>189/>189/28.5)	>2714
2v	CH ₂ CH ₂ CH(CH ₃) ₂	CO ₂ H	$0.005 \pm 0.003 (n = 4)$	>144 (n = 4)	>28800
2w	CH ₂ CH ₂ CH(CH ₃) ₂	H P(0)(0H) ₂ CO ₂ H	$0.034 \pm 0.025 \ (n=3)$	>114 (<i>n</i> = 3)	>3353
2x	CH ₂ CH ₂ CH(CH ₃) ₂	H CO ₂ H	0.006 (0.006/0.005)	154/>159	≥25667
2y	CH ₂ CH ₂ CH(CH ₃) ₂	0 N N CO₂H	0.003 (0.003/0.002)	>159	>53000
2z	CH ₂ CH ₂ CH(CH ₃) ₂	N N CO ₂ H	$0.008 \pm 0.003 (n = 4)$	>106 (n = 4)	>13250
2aa	CH ₂ CN ₄ H	iso-Propenyl	8.437 (7.668/9.205)	181/>227	21 (continued on next page)

Table 1 (continued)

Compound	\mathbb{R}^1	\mathbb{R}^2	Antiviral activity EC ₅₀ ^a (μM)	Cytotoxicity CC ₅₀ (µM)	Therapeutic index ^b
2ab	CH ₂ CH ₂ CN ₄ H	iso-Propenyl	$0.008 \pm 0.003 \ (n=3)$	>249/>249/116.4	14550
2ac	CH ₂ CH ₂ CH ₂ CN ₄ H	iso-Propenyl	$0.014 \pm 0.009 \ (n=3)$	>0.33 (1.6/0.33/>205.9)	>23
2ad	CH ₂ CH ₂ CN ₄ H	iso-Propyl	0.015 (0.014/0.016)	177.1/>226.0	11806
2ae		Н	1.007 (0.661/1.352)	228/>228	226
2af		CH_3	0.593 (0.495/0.691)	>201.8	>340
2ag		CH ₂ Ph	0.114 (0.091/0.136)	129.3/>192.3	1134
2ah		CH_2 -4- C_6H_4 -OCH ₃	0.333 (0.218/0.448)	41.1 (38.9/43.3)	123
2ai	•	CH_2 -4- C_6H_4 -OH	0.063 (0.043/0.083)	58.7 (94.0/23.5)	932
2aj	M P o	iso-Propyl	$0.021 \pm 0.014 \ (n = 6)$	75.45 ± 75.75	3545
2ak		Н	1.196 (1.365/1.026)	92/>251	77
2al		CH ₂ CO ₂ H	0.155 (0.126/0.184)	20.6 (8.3/32.9)	133
2am		CH_2 -4- C_6H_4 - CO_2H	$0.014 \pm 0.011 \ (n = 6)$	$75.53 \pm 82.68 \ (n=6)$	5395
2an		CH_2 -3- C_6H_4 - CO_2H	$0.007 \pm 0.006 \ (n=3)$	>193.6/>193.6/45	6428
2ao		CH_2 -2- C_6H_4 - SO_3H	$0.013 \pm 0.012 \ (n = 5)$	129.6 ± 106.8	9969
2ap		CH_2 -4- C_6H_4 - $P(O)(OH)_2$	$0.368 \pm 0.31 \ (n=3)$	>174.1 (n = 3)	>473
2aq	CH ₂ CH ₂ CH ₂ OH	CH_2CO_2H	1.93 (2.47/1.38)	229 (229/229)	119
2ar	CH ₂ CH ₂ CH ₂ OH	CH_2 -4- C_6H_4 - CO_2H	0.049 (0.076/0.022)	209.7 (202.9/216.4)	4280
2as	CH ₂ CH ₂ CH ₂ CH ₂ OH	CH_2 -4- C_6H_4 - CO_2H	0.004 (0.005/0.003)	>196 (<i>n</i> = 2)	>49000
2at	CH ₂ CH ₂ CH ₂ CH ₂ OH	N CO ₂ H	0.057 (0.070/0.044)	112.0 (148.8/75.2)	1965

^a Values are means of two or more experiments performed on consecutive weeks with the data from individual experiments shown in parentheses. ^b Therapeutic index = CC_{50}/EC_{50} .

Table 2. Structure, RSV inhibitory activity, and cytotoxicity associated with a series of amine-substituted benzimidazol-2-one derivatives

Compound	\mathbb{R}^1	\mathbb{R}^2	Antiviral activity EC ₅₀ ^a (μM)	Cytotoxicity CC ₅₀ (μM)	Therapeutic index ^b
2au	CH ₂ CH ₂ N(CH ₃) ₂	Н	0.062 (0.049/0.075)	292.2 (286.3/298.1)	4712
2av	$CH_2CH_2N(CH_3)_2$	iso-Propenyl	0.011 (0.014/0.007)	9.9 (10.2/9.7)	900
2aw	$CH_2CH_2N(CH_3)_2$	iso-Propyl	0.014 (0.010/0.018)	9.5 (14.3/4.6)	678
2ax	$CH_2CH_2CH_2N(CH_3)_2$	Н	1.665 (1.066/2.263)	89.1 (152.6/25.6)	53
2ay	$CH_2CH_2CH_2N(CH_3)_2$	iso-Propenyl	0.075 (0.093/0.056)	19.9 (20.3/19.5)	265
2az	$CH_2CH_2N(CH_3)_2$	CH_2 -4- C_6H_4 - CO_2CH_3	$0.023 \pm 0.01 \ (n = 6)$	$28.0 \pm 16 \ (n = 6)$	1217
2aaa	$CH_2CH_2N(CH_3)_2$	CH_2 -4- C_6H_4 - CO_2H	$0.196 \pm 0.26 \ (n = 5)$	>150 (n = 5)	>765
2aab	$CH_2CH_2N(CH_3)_2$	CH_2 -4- C_6H_4 - CO · $N(CH_3)_2$	$0.184 \pm 0.127 \ (n = 3)$	$68.7 \pm 52.0 \ (n = 3)$	369
2aac	$CH_2CH_2N(CH_3)_2$	CH_2 -2- C_6H_4 - CO_2CH_3	0.019 (0.023/0.014)	11.5 (11.1/11.9)	605
2aad	$CH_2CH_2N(CH_3)_2$	CH_2 -2- C_6H_4 - CO_2H	0.127 (0.168/0.087)	3.2 (0.7/5.6)	25
2aae	$CH_2CH_2CH(CH_3)_2$	$CH_2CH_2N(CH_3)_2$	0.400 (0.376/0.425)	10.0 (15.5/4.5)	25
2aaf	$CH_2CH_2CH(CH_3)_2$	$CH_2CH_2CH_2N(CH_3)_2$	0.292 (0.206/0.378)	5.3 (2.9/7.6)	18

^a Values are means of two or more experiments performed on consecutive weeks with the data from individual experiments shown in parentheses.

Scheme 1.

terminal heptad repeats of the RSV fusion protein in which the benzimidazol-2-one substituent is considered to project away from the protein toward solvent.⁴¹ The introduction of a benzene spacer element into the alkyl chain allowed an appreciation of topological preferences with the result that, perhaps somewhat surprisingly, the 3 isomeric benzoic acid derivatives 2n-p were not differentiated by RSV. There is a tolerance for a broad range of acidic moieties within this structural context with the phosphonates 2r-t and sulfonate 2u providing RSV inhibitors with potency comparable to that of alkyl analogues, to the extent that comparisons can be made. However, while the introduction of a second carboxylate to the aromatic ring of 20 led to markedly weaker antiviral activity (2q), the introduction of additional spacer elements between the aryl ring and a diacidic moiety fully restored potency (2v, 2w, 2x, and 2z).

The introduction of carboxylic acid isosteres to the terminus of the benzimidazole side chain revealed a pronounced preference for a 2- or 3- atom separation (2aa, 2ab, and 2ac), with simple, branched benzimidazol-2-one substituents being optimal (2ad-aj). The combination of non-acidic but polar benzimidazole side-chain moieties with acidic elements projected from the benzimidazol-2-one heterocycle (2ak-at) produced structure-activity patterns similar to that seen with the iso-amyl series, although phosphonate 2ap is notably less potent than 2s.

The basic amine-containing side chain found in analogues **2au–aad**, characteristic of the original series of benzotriazole-based RSV inhibitors, conferred excellent antiviral properties, provided that the benzimidazol-2-one nitrogen atom was also substituted (Table 2). Combining a basic amine element with a

^b Therapeutic index = CC_{50}/EC_{50} .

remote carboxylic acid moiety provided a zwitterionic species in which the *para*-substituted derivative **2aaa** is comparable to the *ortho* isomer **2aad**. However, altering the topological disposition of functionality by combining an *iso*-amyl benzimidazole substituent with a basic amine projecting from the benzimidazol-2-one heterocycle provided the generally poorer RSV inhibitors **2aae** and **2aaf**.

Based on a combination of high in vitro potency and aqueous solubility exceeding 10 mg/mL, several compounds were selected for evaluation in the cotton rat model of RSV infection^{42,52} with drug delivered as a small particle aerosol. 35,53-56 In this model, in which viral infection occurs asymptomatically, titers peak on day 4 post-inoculation and ribavirin shows efficacy after intraperitoneal administration at a dose of 90 mg/Kg BID. A typical result for ribavirin, which was used as a positive control in the initial experiments, is presented in entry 1 of Table 3. In order to maximize drug exposure of test compounds in the initial experiments, which were designed to establish proof of concept for this chemotype, the 4 test animals were continuously exposed to drug-containing aerosol for 21 h per day for 4 consecutive days beginning 1 h after intranasal inoculation with the Long strain of RSV. For each 21 h experiment, the test compounds were dissolved in water and delivered by aerosol at a rate of 12.5 L/min to animals maintained in plastic cages covered with plastic tops. The concentration of the inhibitor examined in individual experiments is reported in Table 3 and approximately 600 mL of solution was consumed over a 21 h period. All of the animals were sacrificed on day 4, approximately 16 h after completing the final exposure period to drug, since this is the time at which RSV titers are maximal in untreated or placebo-treated animals. The lungs of each animal were removed, transpleurally lavaged, and evaluated for virus levels by inoculating samples of each lung lavage fluid into wells containing HEp-2 cells. Efficacy was defined as the reduction in log_{10} median tissue culture infectious dose (TCID₅₀) of RSV per gram of lung compared to the levels of virus in the control animals. The limit of detection in this assay was $1.6 \log_{10}$ and this figure rather than zero was used to calculate the average virus titer for those animals in which virus was determined to be undetectable. Because of this limit of detection, the efficacy of drug is potentially underestimated where virus titers were undetectable and note is made in Table 3 of the number of animals in each experiment in which this circumstance prevailed. Of the compounds evaluated, 2r, 2u, 2v, 2w, 2z, and 2aj exhibited efficacy comparable to that of ribavirin, whilst 2am and 2aaa were inactive at the concentrations tested, and 2k and **2ab** were toxic, in each case killing 3 of 4 animals. From this cohort, both 2r and 2z demonstrated robust reductions in virus titers and were examined at lower concentrations in the aerosol. At the lower concentration of 0.2 mg/mL, aspartate derivative 2z produced a reduction in virus titers similar to the 1 mg/mL aerosol concentration (Table 3, entries 7 and 8). However,

Table 3. In vivo efficacy of RSV inhibitors

Entry	Compound	Dose of drug (mg/mL = concentration on aerosol)	Log ₁₀ TCID ₅₀ /g lung		
			Treated animals	Control	
1	Ribavirin	90 mpk BID ip cotton rat	$2.5 \pm 0.3 \ (n = 4)$	$4.1 \pm 0.4 \ (n=4)$	
2	2k	2.0 mg/mL cotton rat	Toxic (3 of 4 died)	$4.1 \pm 0.4 \ (n = 4)$	
3	2r	2.0 mg/mL cotton rat	$2.1 \pm 0.58 \ (n = 4)^{a}$	$4.1 \pm 0.4 \ (n = 4)$	
4		0.2 mg/mL cotton rat	$3.5 \pm 0.6 \ (n=4)^a$	$4.1 \pm 0.6 \ (n = 4)$	
5		0.05 mg/mL cotton rat	$4.0 \pm 0.5 \ (n = 4)$	$4.1 \pm 0.6 \ (n = 4)$	
6		0.01 mg/mL cotton rat	$4.4 \pm 0.5 \ (n=4)$	$4.1 \pm 0.6 \ (n = 4)$	
7	2u	1.6 mg/mL cotton rat	$2.25 \pm 0.75 \ (n=4)^{a}$	$4.1 \pm 0.4 \ (n = 4)$	
8	2v	2.0 mg/mL cotton rat	$2.6 \pm 0.71 \ (n = 4)^{b}$	$4.1 \pm 0.4 \ (n = 4)$	
9	2w	0.5 mg/mL cotton rat	$2.43 \pm 0.97 \ (n = 4)^{a}$	$3.9 \pm 0.3 \ (n = 4)$	
10	2z	1.0 mg/mL cotton rat	$1.83 \pm 0.45 \text{ (18 h)} (n = 4)^{\circ}$	$3.0 \pm 0.7 \ (n = 4)$	
11		0.2 mg/mL cotton rat	$3.22 \pm 0.78 \ (n = 6)$	$4.59 \pm 0.44 \ (n = 6)$	
12	2ab	1.33 mg/mL cotton rat	Toxic (3 of 4 died)	$4.1 \pm 0.4 \ (n = 4)$	
13	2aj	0.5 mg/mL cotton rat	$2.1 \pm 0.71 \ (n = 4)^{a}$	$4.1 \pm 0.4 \ (n = 4)$	
14		120 mpk BID sc mouse	$2.55 \pm 0.24 \ (n = 10)$	$3.39 \pm 0.17 \ (n = 9)$	
15		120 mpk BID sc mouse	$2.38 \pm 0.48 \ (n = 10)$	$3.31 \pm 0.35 \ (n = 9)$	
16	2az	50 mpk BID sc mouse	$2.59 \pm 0.1 \ (n = 10)$	3.69 ± 0.31 (n = 10	
17		50 mpk BID sc mouse	$2.94 \pm 0.85 \ (n = 10)$	$4.25 \pm 0.35 \ (n = 9)$	
18		50 mpk BID po mouse	$3.47 \pm 0.42 \ (n = 10)$	4.36 ± 0.38 (n = 10	
19	2am	0.67 mg/mL cotton rat	$3.60 \pm 0.3 \ (n = 4)$	$3.80 \pm 0.3 \ (n = 4)$	
20	2aaa	0.5 mg/mL cotton rat	$4.30 \pm 0.3 \ (n = 4)$	$3.90 \pm 0.3 \ (n = 4)$	
21		50 mpk BID po mouse	$2.72 \pm 0.19 \ (n = 7)$	3.22 ± 0.23 (n = 8)	
22	2aab	50 mpk BID po mouse	$3.09 \pm 0.52 \ (n = 10)$	$4.41 \pm 0.33 \ (n = 10)$	
23		15 mpk BID po mouse	$3.88 \pm 0.29 \ (n=7)$	$4.70 \pm 0.24 \ (n = 7)$	
24	Ribavirin	90 mpk BID sc mouse	$1.86 \pm 0.39 \ (n=9)$	$2.98 \pm 0.18 \ (n = 9)$	

ip, Intraperitoneal administration; sc, subcutaneous administration; po, oral administration. BID indicates that the noted dose was administered twice per 24 h period.

^a Virus titers were undetectable in 2 cotton rats.

^b Virus titers were undetectable in 1 cotton rat.

^c Virus titers were undetectable in 3 cotton rats.

the phosphonic acid **2r** was inactive at concentrations of 0.2, 0.05, and 0.01 mg/mL in the aerosol (Table 3, entries 4–6). The lack of activity under these circumstances presumably reflects inadequate exposure to drug at the site of virus replication and may account for the inactivity associated with **2am** and **2aaa**, both of which were tested at relatively low aerosol concentrations.

Having established in vivo efficacy following topical drug delivery, several compounds were selected for evaluation in a BALB/c mouse model of RSV infection following either subcutaneous (sc) or oral (po) administration.⁴⁰ Ribavirin demonstrated efficacy in this model following sc doses of 90 mpk BID with the first dose administered 1 h post-infection (Table 3, entry 24). Subcutaneous administration of the acidic oxadiazolone 2aj produced reproducible antiviral activity at a dose of 120 mpk BID (Table 3, entries 14 and 15), establishing the potential for this class of RSV inhibitors to interfere with infection in vivo, following delivery to lung tissue by systemic exposure. The basic dimethylamine 2az also demonstrated reproducible efficacy after daily exposure to 50 mpk BID SC (Table 3, entries 16 and 17) and, more importantly, following oral administration at the same dose, representing a significant advance in the search for orally active inhibitors of RSV based on this mechanistic chemotype (Table 3, entry 18). In vivo, the ester moiety of 2az was found to be readily metabolized to the acid 2aaa, a compound that is an 8-fold weaker RSV inhibitor in vitro. 55 Nevertheless, **2aaa** appeared to show some efficacy following po administration, although the reduction in viral titers is not statistically significant (Table 3, entry 21). In an effort to identify a metabolically more stable functionality, the amide 2aab was examined in vivo, providing a promising compound that demonstrated efficacy after doses of both 50 and 15 mpk BID po. However, amide **2aab** is extensively metabolized in both mouse and human liver microsomes, undergoing N-demethylation of both the amine and amide moieties and hydroxylation of both heterocyclic rings,⁵⁷ eliminating this compound from further consideration but providing a clear focus for further structural optimization, studies that will be described in due course.

In summary, a series of potent and water-soluble inhibitors of RSV fusion have been identified that demonstrate activity in models of virus infection following topical exposure to drug via small particle aerosol administration. Structural optimization has led to the identification of compounds with antiviral activity following oral administration, providing a basis for further structural optimization in the quest for candidates suitable for clinical development.

Acknowledgments

We thank Drs. J. J. Kim Wright and Richard J. Colonno for their support and encouragement throughout this work.

References and notes

- For Part 1 of this series see: Yu, K.-L.; Zhang, Y.; Civiello, R. L.; Kadow, K. F.; Cianci, C.; Krystal, M.; Meanwell, N. A. Bioorg. Med. Chem. Lett. 2003, 13, 2141.
- For Part 2 of this series see: Yu, K.-L.; Zhang, Y.; Civiello, R. L.; Trehan, A. K.; Pearce, B. C.; Yin, Z.; Combrink, K. D.; Gulgeze, H. B.; Wang, X. A.; Kadow, K. F.; Cianci, C. W.; Krystal, M.; Meanwell, N. A. Bioorg. Med. Chem. Lett. 2004, 14, 1133.
- Meanwell, N. A.; Krystal, M. Drug Discovery Today 2000, 5, 241.
- 4. Ottolini, M. G.; Hemming, V. G. Drugs 1997, 54, 867.
- 5. Wyde, P. R. Antiviral Res. 1998, 39, 63.
- 6. Maggon, K.; Barik, S. Rev. Med. Virol. 2004, 14, 149.
- Halstead, D. C.; Jenkins, S. G. South. Med. J. 1998, 91, 433.
- Thompson, W. W.; Shay, D. K.; Weintraub, E.; Brammer, L.; Cox, N.; Anderson, L. J.; Fukuda, K. *JAMA* 2003, 289, 179.
- Greensill, J.; McNamara, P. S.; Dove, W.; Flanagan, B.; Smyth, R. L.; Hart, C. A. Emerg. Infect. Dis. 2003, 9, 372.
- Heikkinen, T.; Chonmaitree, T. Clin. Microbiol. Rev. 2003, 16, 230.
- 11. Hashem, M.; Hall, C. B. J. Clin. Virol. 2003, 27, 14.
- Falsey, A. R.; Hennessey, P. A.; Formica, M. A.; Cox, C.; Walsh, E. E. N. Engl. J. Med. 2005, 352, 1749.
- 13. Falsey, A. R.; Walsh, E. E. Drugs Aging 2005, 22, 577.
- Hertz, M. I.; Englund, J. A.; Snover, D.; Bitterman, P. B.; McGlave, P. B. Medicine 1989, 68, 269.
- Harrington, R. D.; Hooton, T. M.; Hackman, R. C.; Storch, G. A.; Osborne, B.; Gleaves, C. A.; Benson, A.; Meyers, J. D. J. Infect. Dis. 1992, 165, 987.
- 16. Gilbert, B. E.; Knight, V. Antimicrob. Agents Chemother. 1986, 30, 201.
- Johnson, S.; Oliver, C.; Prince, G. A.; Hemming, V. G.; Pfarr, D. S.; Wang, S.-C.; Dormitzer, M.; O'Grady, J.; Koenig, S.; Tamura, J. K.; Woods, R.; Bansal, G.; Couchenour, D.; Tsao, E.; Hall, W. C.; Young, J. F. J. Infect. Dis. 1997, 176, 1215.
- 18. Russell, A. B. Hosp. Med. 1999, 60, 873.
- Handforth, J.; Sharland, M.; Friedland, J. S. Br. Med. J. 2004, 328, 1026.
- Joffe, S.; Ray, G. T.; Escobar, G. J.; Black, S. B.; Lieu, T. A. Pediatrics 1999, 104, 419.
- Lofland, J. H.; O'Connor, J. P.; Chatterton, M. L.; Moxey, E. D.; Paddock, L. E.; Nash, D. B.; Desai, S. A. Clin. Ther. 2000, 22, 1357.
- 22. Yount, L. E.; Mahle, W. T. Pediatrics 2004, 114, 1606.
- Reyes, G. R. Curr. Opin. Drug Discov. Devel. 2001, 4, 651.
- 24. Prince, G. A. Expert Opin. Investig. Drugs 2001, 10, 297.
- 25. Prince, G. A. Expert Opin. Ther. Patents 1999, 9, 753.
- 26. Krilov, L. R. Expert Opin. Ther. Patents 2002, 12, 441.
- Tidwell, R. R.; Geratz, J. D.; DuBovi, E. J. J. Med. Chem. 1983, 26, 294.
- 28. Ding, W. D.; Mitsner, B.; Krishnamurthy, G.; Aulabaugh, A.; Hess, C. D.; Zaccardi, J.; Cutler, M.; Feld, B.; Gazumyan, A.; Raifeld, Y.; Nikitenko, A.; Lang, S. A.; Gluzman, Y.; O'Hara, B.; Ellestad, G. A. *J. Med. Chem.* 1998, 41, 2671.
- Nikitenko, A. A.; Raifeld, Y. E.; Wang, T. Z. Bioorg. Med. Chem. Lett. 2001, 11, 1041.
- 30. Razinkov, V.; Gazumyan, A.; Nikitenko, A.; Ellestad, G. A.; Krishnamurthy, G. *Chem. Biol.* **2001**, *8*, 645.
- 31. Razinkov, V.; Huntley, C.; Ellestad, G. A.; Krishnamurthy, G. *Antiviral Res.* **2002**, *55*, 189.

- 32. Huntley, C. C.; Weiss, W. J.; Gazumyan, A.; Buklan, A.; Feld, B.; Hu, W.; Jones, T. R.; Murphy, T.; Nikitenko, A. A.; O'Hara, B.; Prince, G.; Quartuccio, S.; Raifeld, Y. E.; Wyde, P.; O'Connell, J. F. *Antimicrob. Agents Chemother.* **2002**, *46*, 841.
- 33. Douglas, J. L.; Panis, M. L.; Ho, E.; Lin, K.-Y.; Krawczyk, S. H.; Grant, D. M.; Cai, R.; Swaminathan, S.; Cihlar, T. *J. Virol.* **2003**, *77*, 5054.
- 34. Andries, K.; Moeremans, M.; Gevers, T.; Willebrords, R.; Sommen, C.; Lacrampe, J.; Janssens, F.; Wyde, P. R. *Antiviral Res.* **2003**, *60*, 209.
- 35. Wyde, P. R.; Chetty, S. N.; Timmerman, P.; Gilbert, B. E.; Andries, K. *Antiviral Res.* **2003**, *60*, 221.
- Douglas, J. L.; Panis, M. L.; Ho, E.; Lin, K.-Y.; Krawczyk, S. H.; Grant, D. M.; Cai, R.; Swaminathan, S.; Chen, X.; Cihlar, T. Antimicrob. Agents Chemother. 2005, 49, 2460.
- Liuzzi, M.; Mason, S. W.; Cartier, M.; Lawetz, C.; McCollum, R. S.; Dansereau, N.; Bolger, G.; Lapeyre, N.; Gaudette, Y.; Lagace, L.; Massariol, M. J.; Do, F.; Whitehead, P.; Lamarre, L.; Scouten, E.; Bordeleau, J.; Landry, S.; Rancourt, J.; Fazal, G.; Simoneau, B. J. Virol. 2005, 79, 13105.
- Mason, S. W.; Lawetz, C.; Gaudette, Y.; Do, F.; Scouten, E.; Lagace, L.; Simoneau, B.; Liuzzi, M. Nucleic Acids Res. 2004, 32, 4758.
- Cianci, C.; Yu, K.-L.; Combrink, K.; Sin, N.; Pearce, B.; Wang, A.; Civiello, R.; Voss, S.; Luo, G.; Kadow, K.; Genovesi, E. V.; Venables, B.; Gulgeze, H.; Trehan, A.; James, J.; Lamb, L.; Medina, I.; Roach, J.; Yang, Z.; Zadjura, L.; Colonno, R.; Clark, J.; Meanwell, N.; Krystal, M. Antimicrob. Agents Chemother. 2004, 48, 413.
- Cianci, C.; Genovesi, E. V.; Lamb, L.; Medina, I.; Yang, Z.; Zadjura, L.; Yang, H.; D'Arienzo, C.; Sin, N.; Yu, K.-L.; Combrink, K.; Li, Z.; Colonno, R.; Meanwell, N.; Clark, J.; Krystal, M. Antimicrob. Agents Chemother. 2004, 48, 2448.

- Cianci, C.; Langley, D. R.; Dischino, D. D.; Sun, Y.; Yu, K.-L.; Stanley, A.; Roach, J.; Li, Z.; Dalterio, R.; Colonno, R.; Meanwell, N. A.; Krystal, M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15046.
- 42. Byrd, L. G.; Prince, G. A. Clin. Infect. Dis. 1997, 25, 1363.
- Yu, K.-L.; Civiello, R.; Combrink, K.; Gulgeze, H. B.; Pearce, B. C.; Wang, X.; Meanwell, N. A.; Zhang, Y. W., US Patent 6,506,738, 2003; *Chem. Abstr.* 2002, 136, 294826
- 44. Davoll, J.; Laney, D. H. J. Chem. Soc. 1960, 308.
- Meanwell, N. A.; Sit, S.-Y.; Gao, J.; Wong, H. S.; Gao, Q.; St. Laurent, D. R.; Balasubramanian, N. J. Org. Chem. 1995, 60, 1565.
- Drummond, J. T.; Johnson, G. Tetrahedron Lett. 1998, 1653.
- 47. Sturino, C. F.; Labelle, M. Tetrahedron Lett. 1998, 39, 5891.
- 48. Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Org. Chem. 1958, 80, 3908.
- 49. Ulrich, H.; Tucker, B.; Richter, R. J. Org. Chem. 1978, 43, 1544
- McKenna, C. E.; Schmidhauser, J. J. Chem. Soc. Chem. Commun. 1979, 739.
- 51. Herr, J. R. Bioorg. Med. Chem. 2002, 10, 3379.
- 52. Domachowske, J. B.; Bonville, C. A.; Rosenberg, H. F. *Pediatr. Infect. Dis. J.* **2004**, *23*, S228.
- Knight, V.; Gilbert, B. E. Antiviral Chemother. 1987, 1, 441.
- Wyde, P. R.; Wilson, S. Z.; Petrella, R.; Gilbert, B. E. *Antiviral Res.* 1987, 7, 211.
- Knight, V.; Gilbert, B. Eur. J. Clin. Microbiol. Infect. Dis. 1988, 7, 721.
- Wyde, P. R.; Laquerre, S.; Chetty, S. N.; Gilbert, B. E.; Nitz, T. J.; Pevear, D. C. *Antiviral Res.* 2005, 68, 18.
- 57. Yang, Z.; Zadjura, L.; Yeola, S. unpublished results.